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Abstract. I consider the number of distinct non-cyclic monohaloalkanes, compared with 
the number of configurations of these molecules on a Bethe lattice. It is found that a finite 
fraction of the bonds in a large molecule fail to generate fresh configurations when the 
attached branch is rotated. 

The solution of structural combinatorial problems is important in the study of a number 
of statistical models in physics. For example, in the theory of polymer solutions, 
calculating the number of configurations of a chain molecule is a first step toward 
finding its free energy, which is mainly entropic in origin. In studies of gelation, 
parameters of interest are the gel fraction and the distribution of sizes and structures 
of gel fragments above and below the gelation threshold (de Gennes 1979). In an early 
treatment, Flory (1953) modelled the gel transition by what amounted to a percolation 
problem on a Bethe lattice. More generally in percolation problems, the variation with 
concentration of the distribution of sizes of subpercolation clusters usefully character- 
izes the percolation transition. 

We can view the subpercolation clusters in a way which may be of interest in 
assessing the validity of percolation theory as a model of gelation. We regard the set 
of lattice animals as different conformations of an irreducible underlying set of ‘lattice 
molecules’. In other words, we view as identical those animals that can be deformed 
into one another by a specified set of elementary limb manipulations (specifically 
excluding removal of a limb). For example, we might regard the two distinct 3-site 
animals on a square lattice-an L-shape and an I-shape-as different conformations 
of the same linear molecule of three atoms. Proceeding in this way, starting from a 
distribution of clusters we would ‘quotient out’ the configurations of the underlying 
set of molecules to leave us with the distribution of distinct molecules. This kind of 
approach might be of use in assessing the yield of different products in a theoretical 
study of polymerization or vulcanization modelled by the corresponding problems of 
reacting monomers or polymers on a lattice. 

Let us focus on one feature of the outlined scheme, and consider the calculation 
of the number of structural isomers of a molecule of known chemical composition. In 
this case the local configuration of bonds issuing from an atom is given, and the group 
of configurations of the whole molecule is generated by rotations around the bonds 
connecting the atoms. As a simple model problem of this kind, consider the chemistry 
of non-cyclic saturated hydrocarbons; in particular, the molecules with chemical 
formula CnH2n+1X, where X and H are monovalent atoms, and C is tetravalent with 
bonds that project towards the vertices of a circumscribed tetrahedron. We will see 
later that the atom X, by providing a reference point on the molecule, facilitates the 
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finding of a recurrence relation between the numbers of molecules with different 
numbers of atoms. 

In addition to ignoring the complications of loop structures in the molecules, we 
shall further neglect interactions between the different branches of the molecule; we 
assume that it is always possible to manipulate a molecule into any configuration that 
respects the local arrangement of bonds at a carbon atom. This will involve treating 
the branches as ghosts. Since we are interested only in the numbers of molecules with 
n carbon atoms, the last assumption can be incorporated by imagining the molecules 
to lie on a Bethe lattice; on identifying the atom X with a halogen, we may state our 
problem as that of enumerating the ‘Bethe haloalkanes’ and their configurations. 

In generating the different configurations of a molecule, rotation by an angle 2 ~ / 3  
about a given bond XR-CR1R2R3 (where R I ,  R2 and R3 denote saturated alkyl branches) 
is equivalent to cyclic interchange of the outlying three branches. Since R I ,  Rz and R3 
are different in general, we might expect-in the limit of large molecules-that rotation 
about a given bond would generate on average three (or very nearly three) configurations 
of the molecule on the lattice. We will see eventually that this supposition is very far 
from being correct. 

We build up trees from a common root, denoting by g, the number of trees with 
n carbon atoms (‘nodes’), and defining go = 1. A tree with n + 1 nodes can be constructed 
in two stages. First we attach a single node to the root, leaving three ‘dangling bonds’. 
We then attach to these bonds three sub-trees (‘branches’) containing i, j and k nodes, 
with i+j+ k = n. If n is not exactly divisible by 3,  at least two of the branches must 
be different, so that there are three distinct configurations, ( i , j ,  k), ( j ,  k, i )  and ( k ,  i , j ) ,  
which represent essentially the same tree. When n is a multiple of 3 the situation is 
similar, except for the gn/3 configurations with three identical branches: each of these 
configurations corresponds to precisely one tree. 

Let us call the set of unsymmetrical trees U and the set of symmetrical trees S. 
Then we can write 

g n + l = f C 1 + C 1 = f  C l + f C l  
u s  u u s  s 

where the first sum is taken over all the trees we have built up, without regard to their 
symmetry. Taking into account in this way the difference between the symmetrical and 
the unsymmetrical trees, we find the following expressions for the number of distinct 
trees with n + 1 nodes, 

n n  4 C C gigjgn-t-]+$gn/, when n is divisible by 3 

(1) ili;ol:o 5 C C gigjgn-1-1 otherwise. 
g n + I =  

1=0 ]=o 

A list of values of g, is given in table 1. 

a generating function 
To assist in the asymptotic solution of (1 )  we combine the two parts by introducing 

where t is a formal parameter. The asymptotic behaviour of g, for n +CO is closely 
related to the singular behaviour of G regarded as a function of the complex variable r. 
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Table 1. Numbers of distinct monohalocarbons, g,, containing n carbon atoms. For large 
n, g, should vary according to (8), which, for comparison with the values in the table, 
gives g,, = 8.40 x lo7 and g,, = 6.79 x 

n g” 

0 1 
1 1 
2 1 
3 2 
4 5 
5 11 
6 28 

20 8.23 x lo7 
50 6.13 x 

Equation ( 1 )  is equivalent to the following functional equation for G(f) :  

G( t )  = 1 +$tG( t ) 3  +$tG( t’)  ( 3 )  

as we can see by expanding each side in powers of t and equating coefficients of t ” .  
Now the coefficients g, are all real and positive, so that G increases monotonically to 
its first singularity at t = r on the real axis as t increases from 0. The number r is the 
limiting value of the ratio g,/g,+, , n +CO, and so must be less than unity. This leads 
to a convenient simplification of ( 3 )  near the singularity: we have ? < r, so that G( t 3 )  
is a regular function of t at t = r. Hence ( 3 )  can be regarded as a cubic equation for 
G with coefficients that are regular in t at r. We rewrite ( 3 )  as 

G3 - 3 CG + 2D = 0 

with C = l / t  and D = (G( t 3 )  + 3 / 2 t ) .  The solutions of this cubic equation take the 
form (Abramowitz and Stegun 1972) 

(4) 

where A’= ( D 2 -  C’) .  Since C = l / t  is non-zero for finite t, neither cube root in (4) 
vanishes. The singularity in G is therefore due to the vanishing of the discriminant A*, 

G = [ - D + A]”’ + [ - D - Ah]”’ 

A2 = ( G ( r 3 )  + 3 / 2 r ) *  - l /r3 = 0 ( 5 )  

which is readily solved for r to any desired degree of accuracy, since G( r’) converges 
rapidly. We could use ( 3 )  and ( 5 )  to eliminate G(r3) in favour of G(r9) ,  which is still 
more rapidly converging, but there is little practical advantage to be gained from this. 
From ( 5 )  and the first few values of g, in table 1 we obtain r = 0.304 218 41. 

The cube roots in (4) can be chosen so that the solution branch increases with t 
from t = 0, corresponding to our original series representation (2). In the neighbourhood 
of r, G(t )  has the form 

G(t )  = l /&-  B ( r  - t ) ’ / * + O ( r  - t )  t + r  ( 6 )  

B2  = 1/ r2  - 1/ r3’* + 2r5’*G‘( r 3 )  (7) 

where 
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and G'( t )  denotes the formal derivative of G( t )  with respect to t .  (Naturally, once we 
know the form of the singularity in G we can try a series solution for (3) of the form 
(6); in practice a systematic expansion of this kind would be useful if higher order 
corrections were required to the asymptotic form of g, to be calculated below.) 

The limiting behaviour (6) of G ( t )  allows us to find the asymptotic form of the 
coefficients g,. We expand ( r  - t ) ' / '  in a power series in t and compute the general 
coefficient. This gives 

1 . 3 . 5 . .  . (2n-3) 1 

n !  ( 2 r ) "  
g, - BJ; 

The coefficient B can be calculated directly from (7), giving 

g, - DQn/n3 / '  n+co (8) 

where D=0.346 304 27 and Q = l / r  = 3.287 1120. 
(The reasoning presented above can easily be repeated for the case of trivalent 

atoms in which the three bonds extending from each atom lie in one plane. The numbers 
of molecules g, takes the same form (8) with D = 0.791 6032 and Q = l / r  = 2.483 2536.) 

Now that we have the asymptotic form for g,, we might, as suggested above, hope 
to relate it very simply to the number of trees-let us call it h,-with n carbon atoms 
and non-rotatable bonds. There are n bonds to rotate into each of three different 
configurations, so that to within factors of order unity we might expect h, - 3"g,. This, 
however, turns out to be an exponentially large overestimate, as we shall see by 
calculating the h, explicitly. 

The generating function H (  t )  = Zy=:=, h,t" satisfies the following equation, 
analogous to (3) above, 

H (  t )  = 1 + iH( t ) 3 .  

Writing H = 1 + K ( t )  we have t (K)  = K/(1+ K ) 3 ,  which is in a form suitable for 
application of Lagrange's formula for reversion of power series (Whittaker and Watson 
1927). We find 

~ 3 " .  ( 9 / 4 ) " 1 n ~ / ~  n + m .  

(In the trivalent case this becomes h,- 71-'/""* 2"/n3l2, to be compared with 2'g,.) 
This shows that 3"g, overestimates h,  by a factor (Q/(9/4))" = 1.46" even when n is 
small enough (say, 10) for the neglect of interference of sub-branches to be a reasonable 
approximation. 

The reason for this is to be sought in (1). For large n the gn/3 'correction term' on 
the right-hand side is negligible, being only one term among O( n2) others, all of which 
are much larger than it. In fact it is only for small n that the correction has any 
appreciable effect; but these lower g,'s still determine the asymptotic form of g ,  through 
the $rst term of (1). 
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We can express this result in a much more concrete way. The discrepancy is due 
to ‘lazy’ bonds attached to 3-fold symmetric chain-terminating groups such as CH,: 
rotation about these bonds does not generate new tree configurations. The exponential 
error shows that the number of lazy bonds is of order n ;  and the fraction of the total 
number of bonds for tetravalent [trivalent] carbon is log Q/log(9/4) ~$0.345 (or 
log Q/log 2 = 0.312). It is perhaps surprising that the fraction of lazy bonds is not, as 
far as I can see, a number that can be expressed simply in terms of integers. 
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